scimba_torch.approximation_space.nn_space¶
Defines the neural network approximation space and its components.
Classes
|
A nonlinear approximation space using a neural network model. |
|
A nonlinear approximation space using a neural network split into components. |
|
A nonlinear approximation space using a neural network model for space-time data. |
|
A nonlinear approximation space using a network model for phase space data. |
|
A nonlinear approximation space using a neural network model with components. |
- class NNxSpace(nb_unknowns, nb_parameters, space_type, spatial_domain, integrator, **kwargs)[source]¶
Bases:
AbstractApproxSpace,ModuleA nonlinear approximation space using a neural network model.
This class represents a parametric approximation space, where the solution is modeled by a neural network. It integrates functionality for evaluating the network, setting/retrieving degrees of freedom, and computing the Jacobian.
- Parameters:
nb_unknowns (
int) – Number of unknowns in the approximation problem.nb_parameters (
int) – Number of parameters in the input.space_type (
Module) – The neural network class used to approximate the solution.spatial_domain (
VolumetricDomain) – The spatial domain of the problem.integrator (
TensorizedSampler) – Sampler used for integration over the spatial and parameter domains.**kwargs – Additional arguments passed to the neural network model.
- Raises:
KeyError – If parameters_bounds is not provided when using PeriodicMLP.
- in_size: int¶
Size of the input to the neural network (spatial dimension + parameters).
- out_size: int¶
Size of the output of the neural network (number of unknowns).
- spatial_domain: VolumetricDomain¶
The spatial domain of the problem.
- integrator: TensorizedSampler¶
Integrator combining the spatial and parameter domains.
- type_space: str¶
Type of the approximation space.
- pre_processing: Callable¶
Function to pre-process inputs.
- post_processing: Callable¶
Function to post-process outputs.
- network: torch.nn.Module¶
Neural network used for the approximation.
- ndof: int¶
Total number of degrees of freedom in the network.
- forward(features, with_last_layer=True)[source]¶
Evaluates the parametric model for given input features.
- Parameters:
features (
Tensor) – Input tensor with concatenated spatial and parameter data.with_last_layer (
bool) – Whether to include the last layer in evaluation. (Default value = True)
- Returns:
Output tensor from the neural network.
- Return type:
torch.Tensor
- evaluate(x, mu, with_last_layer=True)[source]¶
Evaluates the parametric model for given inputs and parameters.
- Parameters:
x (
LabelTensor) – Input tensor from the spatial domain.mu (
LabelTensor) – Input tensor from the parameter domain.with_last_layer (
bool) – Whether to include the last layer in evaluation. (Default value = True)
- Returns:
- Output tensor from the neural network,
wrapped with multi-label metadata.
- Return type:
- set_dof(theta, flag_scope='all')[source]¶
Sets the degrees of freedom (DoF) for the neural network.
- Parameters:
theta (
Tensor) – A vector containing the network parameters.flag_scope (
str) – Scope flag for setting degrees of freedom. (Default value = “all”)
- Return type:
None
- get_dof(flag_scope='all', flag_format='list')[source]¶
Retrieves the degrees of freedom (DoF) of the neural network.
- Parameters:
flag_scope (
str) – Specifies the parameters to return. (Default value = “all”)flag_format (
str) – The format for returning the parameters. (Default value = “list”)
- Return type:
Tensor- Returns:
The network parameters in the specified format.
- jacobian(x, mu)[source]¶
Computes the Jacobian of the network with respect to its parameters.
- Parameters:
x (
LabelTensor) – Input tensor from the spatial domain.mu (
LabelTensor) – Input tensor from the parameter domain.
- Return type:
Tensor- Returns:
Jacobian matrix of shape (num_samples, out_size, num_params).
- class NNxSpaceSplit(nb_unknowns, nb_parameters, net_type, spatial_domain, integrator, **kwargs)[source]¶
Bases:
AbstractApproxSpace,ModuleA nonlinear approximation space using a neural network split into components.
It is designed to handle problems where the input space can be split into spatial and parameter components, allowing for more efficient processing via separate neural networks for each component.
- Parameters:
nb_unknowns (
int) – The number of unknowns in the approximation problem.nb_parameters (
int) – The number of parameters in the problem.net_type (
Module) – The neural network model used to approximate the solution.spatial_domain (
VolumetricDomain) – The domain representing the spatial component of the problem.integrator (
TensorizedSampler) – The sampler used for integration over the spatial domain.**kwargs – Additional keyword arguments for configuring the neural network model.
- Raises:
ValueError – If the network type is not supported.
KeyError – If parameters_bounds is not provided when using PeriodicMLP.
- in_size: int¶
The size of the inputs to the neural network.
- out_size: int¶
The size of the outputs from the neural network.
- spatial_domain: VolumetricDomain¶
The spatial domain of the problem.
- integrator: TensorizedSampler¶
The integrator for the spatial and parameter domains.
- network_x: torch.nn.Module¶
The neural network for processing spatial inputs.
- network_mu: torch.nn.Module¶
The neural network for processing parameter inputs.
- network_cat: torch.nn.Module¶
The neural network for processing concatenated inputs.
- ndof: int¶
The number of degrees of freedom (DoF) in the neural network.
- forward(x, mu, with_last_layer=True)[source]¶
Evaluates the parametric model for given inputs and parameters.
- Parameters:
x (
Tensor) – Input tensor from the spatial domain.mu (
Tensor) – Input tensor from the parameter domain.with_last_layer (
bool) – Whether to include the last layer in evaluation. (Default value = True)
- Returns:
Output tensor from the neural network.
- evaluate(x, mu, with_last_layer=True)[source]¶
Evaluates the parametric model for given inputs and parameters.
- Parameters:
x (
LabelTensor) – Input tensor from the spatial domain.mu (
LabelTensor) – Input tensor from the parameter domain.with_last_layer (
bool) – Whether to include the last layer in evaluation. (Default value = True)
- Returns:
The result of the neural network evaluation.
- Return type:
- set_dof(theta, flag_scope='all')[source]¶
Sets the degrees of freedom (DoF) for the neural network.
- Parameters:
theta (
Tensor) – A vector containing the network parameters.flag_scope (
str) – Scope flag for setting degrees of freedom. (Default value = “all”)
- Return type:
None
- get_dof(flag_scope='all', flag_format='list')[source]¶
Retrieves the degrees of freedom (DoF) of the neural network.
- Parameters:
flag_scope (
str) – Specifies the parameters to return. (Default value = “all”)flag_format (
str) – The format for returning the parameters. (Default value = “list”)
- Return type:
Tensor- Returns:
The network parameters in the specified format.
- jacobian(x, mu)[source]¶
Computes the Jacobian matrix of the model with respect to its inputs.
- Parameters:
x (
LabelTensor) – The input tensor for the spatial domain.mu (
LabelTensor) – The input tensor for the parameter domain.
- Return type:
Tensor- Returns:
The Jacobian matrix of the model.
- class SeparatedNNxSpace(nb_unknowns, nb_parameters, rank, net_type, spatial_domain, integrator, **kwargs)[source]¶
Bases:
AbstractApproxSpace,ModuleA nonlinear approximation space using a neural network model with components.
This class represents a parametric approximation space, where the solution is modeled by a neural network with separated components for efficient computation.
- Parameters:
nb_unknowns (
int) – Number of unknowns in the approximation problem.nb_parameters (
int) – Number of parameters in the input.rank (
int) – Rank of the separated tensor structure.net_type (
Module) – The neural network class used to approximate the solution.spatial_domain (
VolumetricDomain) – The spatial domain of the problem.integrator (
TensorizedSampler) – Sampler used for integration over the spatial and parameter domains.**kwargs – Additional arguments passed to the neural network model.
- Raises:
ValueError – If the network type is not supported.
- in_size: int¶
Size of the input to the neural network (spatial dimension + parameters).
- out_size: int¶
Size of the output of the neural network (number of unknowns).
- spatial_domain: VolumetricDomain¶
The spatial domain of the problem.
- integrator: TensorizedSampler¶
Integrator for sampling over the spatial and parameter domains.
- network: nn.ModuleList¶
list of neural network modules used for the approximation.
- ndof: int¶
Total number of degrees of freedom in the network.
- forward(features)[source]¶
Evaluates the parametric model for given input features.
- Parameters:
features (
Tensor) – Input tensor with concatenated spatial and parameter data.- Return type:
Tensor- Returns:
Output tensor from the neural network.
- evaluate(x, mu, with_last_layer=True)[source]¶
Evaluates the parametric model for given inputs and parameters.
- Parameters:
x (
LabelTensor) – Input tensor from the spatial domain.mu (
LabelTensor) – Input tensor from the parameter domain.with_last_layer (
bool) – Whether to include the last layer in evaluation. (Default value = True)
- Return type:
- Returns:
Output tensor from the neural network, wrapped with multi-label metadata.
- Raises:
ValueError – If with_last_layer is False.
- set_dof(theta, flag_scope='all')[source]¶
Sets the degrees of freedom (DoF) for the neural network.
- Parameters:
theta (
Tensor) – A vector containing the network parameters.flag_scope (
str) – Scope flag for setting degrees of freedom. (Default value = “all”)
- Raises:
ValueError – If the flag_scope is not “all”.
- Return type:
None
- get_dof(flag_scope='all', flag_format='list')[source]¶
Retrieves the degrees of freedom (DoF) of the neural network.
- Parameters:
flag_scope (
str) – Specifies the parameters to return. (Default value = “all”)flag_format (
str) – The format for returning the parameters. (Default value = “list”)
- Return type:
list|Tensor- Returns:
The network parameters in the specified format.
- Raises:
ValueError – If the flag_scope is not “all” or If the flag_format is not “list” or “tensor”.
- jacobian(x, mu)[source]¶
Computes the Jacobian of the network with respect to its parameters.
- Parameters:
x (
LabelTensor) – Input tensor from the spatial domain.mu (
LabelTensor) – Input tensor from the parameter domain.
- Return type:
Tensor- Returns:
Jacobian matrix of shape (num_samples, out_size, num_params).
- class NNxtSpace(nb_unknowns, nb_parameters, net_type, spatial_domain, integrator, **kwargs)[source]¶
Bases:
AbstractApproxSpace,ModuleA nonlinear approximation space using a neural network model for space-time data.
It represents a parametric approximation space, where the solution is modeled by a neural network, integrating functionality for evaluating the network, setting/retrieving degrees of freedom, and computing the Jacobian.
- Parameters:
nb_unknowns (
int) – Number of unknowns in the approximation problem.nb_parameters (
int) – Number of parameters in the input.net_type (
Module) – The neural network class used to approximate the solution.spatial_domain (
VolumetricDomain) – The spatial domain of the problem.integrator (
TensorizedSampler) – Sampler used for integration over the spatial and parameter domains.**kwargs – Additional arguments passed to the neural network model.
- Raises:
ValueError – If the network type is not supported.
- in_size: int¶
Size of the input to the neural network (spatial dimension + parameters + time).
- out_size: int¶
Size of the output of the neural network (number of unknowns).
- spatial_domain: VolumetricDomain¶
The spatial domain of the problem.
- integrator: TensorizedSampler¶
Integrator combining the spatial and parameter domains.
- network: torch.nn.Module¶
Neural network used for the approximation.
- ndof: int¶
Total number of degrees of freedom in the network.
- forward(features, with_last_layer=True)[source]¶
Evaluates the parametric model for given input features.
- Parameters:
features (
Tensor) – Input tensor with concatenated spatial and parameter data.with_last_layer (
bool) – Whether to include the last layer in evaluation. (Default value = True)
- Return type:
Tensor- Returns:
Output tensor from the neural network.
- evaluate(t, x, mu, with_last_layer=True)[source]¶
Evaluates the parametric model for given inputs and parameters.
- Parameters:
t (
LabelTensor) – Input tensor from the time domain.x (
LabelTensor) – Input tensor from the spatial domain.mu (
LabelTensor) – Input tensor from the parameter domain.with_last_layer (
bool) – Whether to include the last layer in evaluation. (Default value = True)
- Return type:
- Returns:
Output tensor from the neural network, wrapped with multi-label metadata.
- set_dof(theta, flag_scope='all')[source]¶
Sets the degrees of freedom (DoF) for the neural network.
- Parameters:
theta (
Tensor) – A vector containing the network parameters.flag_scope (
str) – Scope flag for setting degrees of freedom. (Default value = “all”)
- Return type:
None
- get_dof(flag_scope='all', flag_format='list')[source]¶
Retrieves the degrees of freedom (DoF) of the neural network.
- Parameters:
flag_scope (
str) – Specifies the parameters to return. (Default value = “all”)flag_format (
str) – The format for returning the parameters. (Default value = “list”)
- Returns:
The network parameters in the specified format.
- Return type:
torch.Tensor
- jacobian(t, x, mu)[source]¶
Computes the Jacobian of the network with respect to its parameters.
- Parameters:
t (
LabelTensor) – Input tensor from the time domain.x (
LabelTensor) – Input tensor from the spatial domain.mu (
LabelTensor) – Input tensor from the parameter domain.
- Return type:
Tensor- Returns:
Jacobian matrix of shape (num_samples, out_size, num_params).
- class NNxvSpace(nb_unknowns, nb_parameters, net_type, spatial_domain, velocity_domain, integrator, **kwargs)[source]¶
Bases:
AbstractApproxSpace,ModuleA nonlinear approximation space using a network model for phase space data.
This class represents a parametric approximation space, where the solution is modeled by a neural network, integrating functionality for evaluating the network, setting/retrieving degrees of freedom, and computing the Jacobian.
- Parameters:
nb_unknowns (
int) – Number of unknowns in the approximation problem.nb_parameters (
int) – Number of parameters in the input.net_type (
Module) – The neural network class used to approximate the solution.spatial_domain (
VolumetricDomain) – The spatial domain of the problem.velocity_domain (
SurfacicDomain) – The velocity domain of the problem.integrator (
TensorizedSampler) – Sampler used for integration over the spatial and parameter domains.**kwargs – Additional arguments passed to the neural network model.
- Raises:
KeyError – If parameters_bounds is not provided when using PeriodicMLP or PeriodicResNet.
ValueError – If the network type is not supported.
- in_size: int¶
Size of the input to the neural network (spatial dimension + velocity dimension + parameters).
- out_size: int¶
Size of the output of the neural network (number of unknowns).
- spatial_domain: VolumetricDomain¶
The spatial domain of the problem.
- velocity_domain: SurfacicDomain¶
The velocity domain of the problem.
- integrator: TensorizedSampler¶
Sampler used for integration over the spatial and parameter domains.
- ndof: int¶
Total number of degrees of freedom in the network.
- forward(features, with_last_layer=True)[source]¶
Evaluates the parametric model for given input features.
- Parameters:
features (
Tensor) – Input tensor with concatenated spatial and parameter data.with_last_layer (
bool) – Whether to include the last layer in evaluation. (Default value = True)
- Return type:
Tensor- Returns:
Output tensor from the neural network.
- evaluate(x, v, mu, with_last_layer=True)[source]¶
Evaluates the parametric model for given inputs and parameters.
- Parameters:
x (
LabelTensor) – Input tensor from the spatial domain.v (
LabelTensor) – Input tensor from the velocities domain.mu (
LabelTensor) – Input tensor from the parameter domain.with_last_layer (
bool) – Whether to include the last layer in evaluation. (Default value = True)
- Return type:
- Returns:
Output tensor from the neural network, wrapped with multi-label metadata.
- set_dof(theta, flag_scope='all')[source]¶
Sets the degrees of freedom (DoF) for the neural network.
- Parameters:
theta (
Tensor) – A vector containing the network parameters.flag_scope (
str) – Scope flag for setting degrees of freedom. (Default value = “all”)
- Return type:
None
- get_dof(flag_scope='all', flag_format='list')[source]¶
Retrieves the degrees of freedom (DoF) of the neural network.
- Parameters:
flag_scope (
str) – Specifies the parameters to return. (Default value = “all”)flag_format (
str) – The format for returning the parameters. (Default value = “list”)
- Return type:
Tensor- Returns:
The network parameters in the specified format.
- jacobian(x, v, mu)[source]¶
Computes the Jacobian of the network with respect to its parameters.
- Parameters:
x (
LabelTensor) – Input tensor from the spatial domain.v (
LabelTensor) – Input tensor from the velocities domain.mu (
LabelTensor) – Input tensor from the parameter domain.
- Return type:
Tensor- Returns:
Jacobian matrix of shape (num_samples, out_size, num_params).
Expands the hidden layers of the neural network to accommodate new sizes.
- Parameters:
layer_sizes (
list[int]) – list of sizes for the hidden layers.set_to_zero (
bool) – If True, initializes the new layers to zero. Otherwise, uses small random numbers. Default is True.
- Return type:
None