scimba_torch.numerical_solvers.temporal_pde.pinns¶
Define the TemporalPinns class, which is a subclass of CollocationProjector.
It is designed to solve time-dependent partial differential equations (PDEs) using physics-informed neural networks (PINNs).
Classes
| 
 | A class extending TemporalPinns with Anagram preconditioning. | 
| 
 | A class extending TemporalPinns with natural gradient preconditioning. | 
| 
 | A class to solve time-dependent PDEs using Physics-Informed Neural Networks. | 
- class TemporalPinns(pde, bc_type='strong', ic_type='strong', **kwargs)[source]¶
- Bases: - CollocationProjector- A class to solve time-dependent PDEs using Physics-Informed Neural Networks. - Parameters:
- pde ( - TemporalPDE) – The time-dependent PDE to be solved
- bc_type ( - str) – The type of boundary condition to be applied (“strong” or “weak”). (default: “strong”)
- ic_type ( - str) – The type of initial condition to be applied (“strong” or “weak”). (default: “strong”)
- **kwargs – Additional keyword arguments for customization. 
 
 - get_dof(flag_scope='all', flag_format='list')[source]¶
- Gets the parameters of the approximation space in use. - Parameters:
- flag_scope ( - str) – Scope of the degrees of freedom to retrieve.
- flag_format ( - str) – Format of the output, either “list” or “tensor”.
 
- Return type:
- Tensor|- list
- Returns:
- Degrees of freedom in the specified format. 
 
 - evaluate(t, x, mu)[source]¶
- Evaluates the approximation at given points. - Parameters:
- t ( - Tensor) – Input tensor for time coordinates.
- x ( - Tensor) – Input tensor for spatial coordinates.
- mu ( - Tensor) – Input tensor for parameters.
 
- Return type:
- Returns:
- The evaluated solution. 
 
 - sample_all_vars(**kwargs)[source]¶
- Samples collocation points for the PDE, BCs, and initial conditions. - Parameters:
- **kwargs ( - Any) – Additional keyword arguments for sampling.
- Return type:
- dict[- str,- tuple[- LabelTensor,- ...]]
- Returns:
- Dictionary of sampled tensors. 
 
 
- class NaturalGradientTemporalPinns(pde, bc_type='strong', ic_type='strong', **kwargs)[source]¶
- Bases: - TemporalPinns- A class extending TemporalPinns with natural gradient preconditioning. - Parameters:
- pde ( - TemporalPDE) – The time-dependent PDE to be solved.
- bc_type ( - str) – Type of boundary condition (“strong” or “weak”). Defaults to “strong”.
- ic_type ( - str) – Type of initial condition (“strong” or “weak”). Defaults to “strong”.
- **kwargs – Additional keyword arguments for customization. 
 
 
- class AnagramTemporalPinns(pde, bc_type='strong', ic_type='strong', **kwargs)[source]¶
- Bases: - TemporalPinns- A class extending TemporalPinns with Anagram preconditioning. - Parameters:
- pde ( - TemporalPDE) – The time-dependent PDE to be solved.
- bc_type ( - str) – Type of boundary condition (“strong” or “weak”). Defaults to “strong”.
- ic_type ( - str) – Type of initial condition (“strong” or “weak”). Defaults to “strong”.
- **kwargs – Additional keyword arguments for customization.