scimba_torch.numerical_solvers.temporal_pde.pinns¶
Define the TemporalPinns class, which is a subclass of CollocationProjector.
It is designed to solve time-dependent partial differential equations (PDEs) using physics-informed neural networks (PINNs).
Classes
|
A class extending TemporalPinns with Anagram preconditioning. |
|
A class extending TemporalPinns with natural gradient preconditioning. |
|
A class extending TemporalPinns with preconditioning. |
|
A class to solve time-dependent PDEs using Physics-Informed Neural Networks. |
- class TemporalPinns(pde, bc_type='strong', ic_type='strong', **kwargs)[source]¶
Bases:
CollocationProjectorA class to solve time-dependent PDEs using Physics-Informed Neural Networks.
- Parameters:
pde (
TemporalPDE) – The time-dependent PDE to be solvedbc_type (
str) – The type of boundary condition to be applied (“strong” or “weak”). (default: “strong”)ic_type (
str) – The type of initial condition to be applied (“strong” or “weak”). (default: “strong”)**kwargs – Additional keyword arguments for customization.
- Raises:
ValueError – when the lengths of in_weights or bc_weights of ic_weights does not match residual_size or bc_residual_size or ic_residual_size
- get_dof(flag_scope='all', flag_format='list')[source]¶
Gets the parameters of the approximation space in use.
- Parameters:
flag_scope (
str) – Scope of the degrees of freedom to retrieve.flag_format (
str) – Format of the output, either “list” or “tensor”.
- Return type:
Tensor|list- Returns:
Degrees of freedom in the specified format.
- evaluate(t, x, mu)[source]¶
Evaluates the approximation at given points.
- Parameters:
t (
Tensor) – Input tensor for time coordinates.x (
Tensor) – Input tensor for spatial coordinates.mu (
Tensor) – Input tensor for parameters.
- Return type:
- Returns:
The evaluated solution.
- sample_all_vars(**kwargs)[source]¶
Samples collocation points for the PDE, BCs, and initial conditions.
- Parameters:
**kwargs (
Any) – Additional keyword arguments for sampling.- Return type:
dict[str,tuple[LabelTensor,...]]- Returns:
Dictionary of sampled tensors.
- class PreconditionedTemporalPinns(**kwargs)[source]¶
Bases:
ABCA class extending TemporalPinns with preconditioning.
- Parameters:
**kwargs (
Any) – Additional keyword arguments for customization.
- class NaturalGradientTemporalPinns(pde, bc_type='strong', ic_type='strong', **kwargs)[source]¶
Bases:
TemporalPinns,PreconditionedTemporalPinnsA class extending TemporalPinns with natural gradient preconditioning.
- Parameters:
pde (
TemporalPDE) – The time-dependent PDE to be solved.bc_type (
str) – Type of boundary condition (“strong” or “weak”). Defaults to “strong”.ic_type (
str) – Type of initial condition (“strong” or “weak”). Defaults to “strong”.**kwargs – Additional keyword arguments for customization.
- class AnagramTemporalPinns(pde, bc_type='strong', ic_type='strong', **kwargs)[source]¶
Bases:
TemporalPinns,PreconditionedTemporalPinnsA class extending TemporalPinns with Anagram preconditioning.
- Parameters:
pde (
TemporalPDE) – The time-dependent PDE to be solved.bc_type (
str) – Type of boundary condition (“strong” or “weak”). Defaults to “strong”.ic_type (
str) – Type of initial condition (“strong” or “weak”). Defaults to “strong”.**kwargs – Additional keyword arguments for customization.