scimba_torch.geometry.regularized_eikonal_pde¶
The PDE for learning a Regularized Signed Distance Function.
Classes
|
Base class for representing a regularized Eikonal PDE. |
- class RegEikonalPDE(space, **kwargs)[source]¶
Bases:
StrongFormEllipticPDEBase class for representing a regularized Eikonal PDE.
- Parameters:
space (
AbstractApproxSpace) – The approximation space for the problem.**kwargs – Additional keyword arguments.
- rhs(w, x, mu)[source]¶
Compute the right-hand side (RHS) of the PDE.
- Parameters:
w (
MultiLabelTensor) – State tensor.x (
LabelTensor) – Spatial coordinates tensor.mu (
LabelTensor) – Parameter tensor.
- Return type:
tuple[Tensor,Tensor]- Returns:
The source term ( f(x, mu) ).
- operator(w, x, mu)[source]¶
Compute the operator of the PDE.
- Parameters:
w (
MultiLabelTensor) – State tensor.x (
LabelTensor) – Spatial coordinates tensor.mu (
LabelTensor) – Parameter tensor.
- Return type:
tuple[Tensor,Tensor]- Returns:
The result of applying the operator to the state.
- functional_operator(func, x, mu, theta)[source]¶
Apply the functional operator for the differential equation.
- Parameters:
func (
VarArgCallable) – The callable function to apply.x (
Tensor) – Spatial coordinates tensor.mu (
Tensor) – Parameter tensor.theta (
Tensor) – Theta parameter tensor.
- Return type:
Tensor- Returns:
The result of applying the functional operator.
- bc_rhs(w, x, n, mu)[source]¶
Compute the RHS for the boundary conditions.
- Parameters:
w (
MultiLabelTensor) – State tensor.x (
LabelTensor) – Boundary coordinates tensor.n (
LabelTensor) – Normal vector tensor.mu (
LabelTensor) – Parameter tensor.
- Return type:
tuple[Tensor,Tensor]- Returns:
The boundary condition g(x, μ).
- bc_operator(w, x, n, mu)[source]¶
Compute the operator for the boundary conditions.
- Parameters:
w (
MultiLabelTensor) – State tensor.x (
LabelTensor) – Boundary coordinates tensor.n (
LabelTensor) – Normal vector tensor.mu (
LabelTensor) – Parameter tensor.
- Return type:
tuple[Tensor,Tensor]- Returns:
The boundary operator applied to the state.
- functional_operator_bc(func, x, n, mu, theta)[source]¶
Apply the functional operator for boundary conditions.
- Parameters:
func (
VarArgCallable) – The callable function to apply.x (
Tensor) – Spatial coordinates tensor.n (
Tensor) – Normal vector tensor.mu (
Tensor) – Parameter tensor.theta (
Tensor) – Theta parameter tensor.
- Return type:
Tensor- Returns:
The result of applying the functional operator.